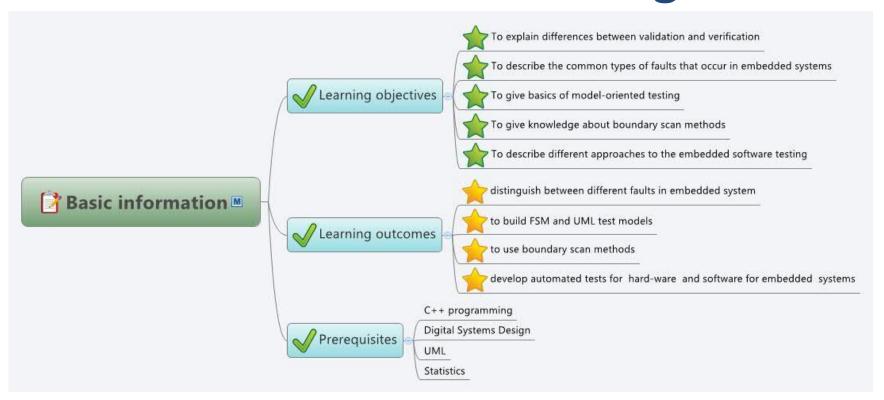


"Pilot Teaching" Implementation Software for Embedded Systems

Galyna Tabunshchyk

Prof. Software Tools Department



Developed Modules

	Discipline	Specialty	Developers
1	C for Embedded Systems	Informational Technology of Design	Prof. Galyna Tabunshchyk
2	Embedded Software Development	Software Engineering Informational Technology of Design	Prof. Galyna Tabunshchyk Senior Lecture Natalya Mironova Ba Student Evgeniy Tverdohleb
3	Quality Engineering	Informational Technology of Design	Prof. Galyna Tabunshchyk Seniour Lecture Tetyana Kaplienko
4	ES Software Testing	Artificial Intelligence	Prof. Galyna Tabunshchyk Seniour Lecture Tetyana Kaplienko
5	FC Buggy	Project Work	Prof. Galyna Tabunshchyk

ES Software Testing

Basic Information

Duration:72h

Lectures: 36 h

Lab works: 36 h

Lecturer

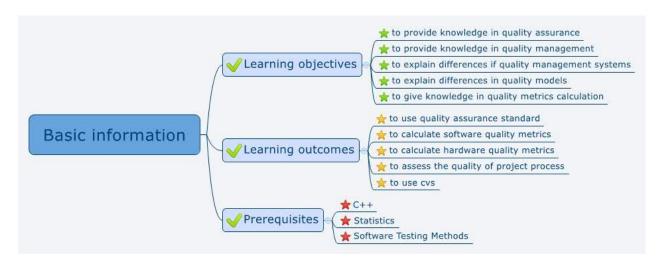
Teaching Assistant

Galyna TABUNSHCHYK, PhD, Prof. galina.tabunshchik@gmail.com Tatyana Kaplienko, tabr007@yandex.ua

Week	Subject	
1	Introduction	
2	Validation and verification of the digital systems	
3	Faults in Embedded Systems. Hardware Faults	
4	Software-Hardware covalidation Faults Model	
5	Model based testing	
6	FSM Models for test generation	
7	Midterm Exam	
8	Testing of Embedded core-based systems ob chips	
9-10	Boundary scan methods and standards.	
11	Virtual instrumentation for boundary scan	
12	Embedded software testing. Functional testing	
13	Embedded software testing. Coverage testing,	
14	On-line testing of embedded systems	
15	Comparison of IT technologies used for verification and validation	
16	Review, Exam	

Experiments, Projects,	Subject
Lab Works	
Lab work 1	Working with Git
Lab work 2	Functional Testing with Basys 2 Board
Lab work 3	Functional testing of embedded software
Lab work 4	FMS based testing with remotes experiments
Lab work 5	Remote functional testing

Quality Engineering


Total hours 108h

Lectures: 12 h

Lab works: 12 h

Self work 60 h

Week	Subject
1	Introduction
2	Quality Management Philosophy.
3	The economics of Quality
4	Quality Engineering
5	Quality Control Methods
6	Configurational Management
7	Software Quality Assurance
8	Software quality system organization.
9	Software quality models
10	Software quality metrics
11	Software certification
12	Licenses of software and documentation

Embedded Software Development

Total hours 108h

Lectures: 12 h

Lab works: 24 h

Self work 72 h

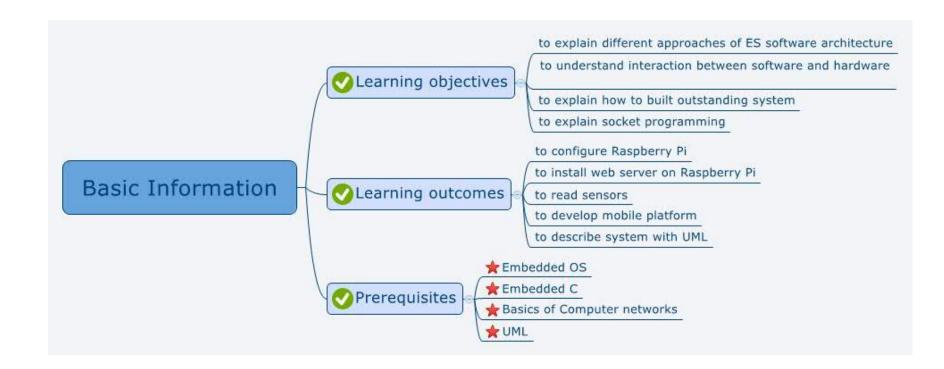
Lecturer

Galyna TABUNSHCHYK,

PhD, Prof.

galina.tabunshchik@gmail.com

Teaching Assistant



Natali Myronova natali.myronova@gmail.com

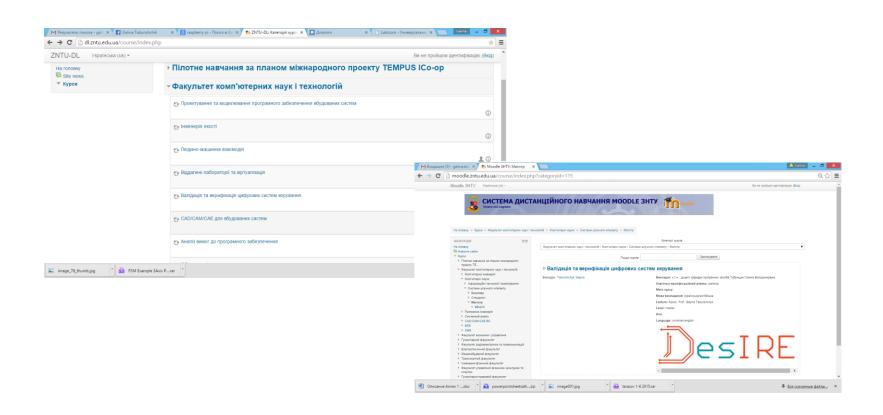
Eygeniy Tverdokhleb junta.kristobal@gmail.com

<u>D</u>evelopment of <u>E</u>mbedded <u>S</u>ystem Courses with implementation of <u>I</u>nnovative Virtual approaches for integration of <u>R</u>esearch, <u>E</u>ducation and Production in UA, GE, AM

Week	Subject
1	Introduction
2-3	Modelling of software for Embedded Systems
3-4	Standard component models
5-6	Architecture of the software for Embedded Systems
6-8	Templates for Software Architecture for Embedded Systems
9-10	Socket programming
11-12	Programming Linux Socket

Experiments, Projects, Lab Works	Subject
Lab work 1	Configuring Raspberry Pi
Lab work 2	Installing Web-server at Raspberry Pi
Lab work 3	Developing QT application at Raspberry Pi
Lab work 4	Reading sensors from extension board
Lab work 5	Developing Project on Raspberry Pi

Project FC Buggy


Tasks

- 1. To develop software for moving the maze
- 2. Do develop software for follow the line
- 3. Do develop software for rout search, following the line
- 4. To develop software for rout search in maze
- 5. To make musical dancing car
- 6. To control the car with smartphone

<u>Development of Embedded System Courses with implementation of Innovative Virtual approaches for integration of Research, Education and Production in UA, GE, AM</u>

Thank You for Your Attention

